高頻變壓器中共模傳導EMI代表的是什么 |
一、高頻變壓器與EMI 高頻變壓器中傳導EMI產生機理以反激式變換器為例,其主電路如圖1所示。 開關管開通后,變壓器一次側電流逐漸增加,磁芯儲能也隨之增加。當開關管關斷后,二次側整流二極管導通,變壓器儲能被耦合到二次側,給負載供電。 圖1反激變換器 在開關電源中,輸入整流后的電流為尖脈沖電流,開關開通和關斷時變換器中電壓、電流變化率很高,這些波形中含有豐富的高頻諧波。另外,在主開關管開關過程和整流二極管反向恢復過程中,電路的寄生電感、電容會發(fā)生高頻振蕩,以上這些都是電磁干擾的來源。開關電源中存在大量的分布電容,這些分布電容給電磁干擾的傳遞提供了通路,如圖2所示。圖2中,LISN為線性阻抗穩(wěn)定網(wǎng)絡,用于線路傳導干擾的測量。干擾信號通過導線、寄生電容等傳遞到變換器的輸入、輸出端,形成了傳導干擾。變壓器的各繞組之間也存在著大量的寄生電容,如圖3所示。圖3中,A、B、C、D4點與圖1中標識的4點相對應。 圖2反激式開關電源寄生電容典型的分布 圖3變壓器中寄生電容的分布 在圖1所示的反激式開關電源中,變換器工作于連續(xù)模式時,開關管VT導通后,B點電位低于A點,一次繞組匝間電容便會充電,充電電流由A流向B;VT關斷后,寄生電容反向充電,充電電流由B流向A。這樣,變壓器中便產生了差模傳導EMI。同時,電源元器件與大地之間的電位差也會產生高頻變化。由于元器件與大地、機殼之間存在著分布電容,便產生了在輸入端與大地、機殼所構成回路之間流動的共模傳導EMI電流。 具體到變壓器中,一次繞組與二次繞組之間的電位差也會產生高頻變化,通過寄生電容的耦合,從而產生了在一次側與二次側之間流動的共模傳導EMI電流。交流等效回路及簡化等效回路如圖4所示。圖4中:ZLISN為線性阻抗穩(wěn)定網(wǎng)絡的等效阻抗;CP為變壓器一次繞組與二次繞組間的寄生電容;ZG為大地不同點間的等效阻抗;CSG為輸出回路與地間的等效電容;Z為變壓器以外回路的等效阻抗。 圖4變壓器中共模傳導EMI的流通回路 二、變壓器中EMI代表的是什么 變壓器中EMI代表的是電磁干擾。 變壓器與EMI之間有如下的關系: 1.由于變壓器的線圈帶有高頻電流,因此變壓器實際上已成為接收磁場的天線。這些 磁場會沖擊附近的走線,并通過這些走線將磁場傳導或輻射到密封的范圍以外; 2.由于部分線圈有交流電壓,因此實際上它們也成為接收電磁場的天線; 3.初級及次級線圈之間的寄生電容可以將噪聲傳送到絕緣層之外。由于次級線圈的接地通常都與底板連在一起,因此這些噪聲又會通過這個接地面?zhèn)魉突貋?,成為共模噪聲。為了減少泄漏電感,將初級及次級線圈緊靠在一起,但這樣也會增加線圈的互感,從而增加共模噪聲 知識點延伸: 電磁干擾(Electromagnetic Interference,EMI)是干擾電纜信號并降低信號完好性的電子噪音,EMI通常由電磁輻射發(fā)生源如馬達和機器產生。電磁干擾是人們早就發(fā)現(xiàn)的電磁現(xiàn)象,它幾乎和電磁效應的現(xiàn)象同時被發(fā)現(xiàn)。 三、開關電源EMI設計 1.開關電源的EMI源 開關電源的EMI干擾源集中體現(xiàn)在功率開關管、整流二極管、高頻變壓器等,外部環(huán)境對開關電源的干擾主要來自電網(wǎng)的抖動、雷擊、外界輻射等。 (1)功率開關管 功率開關管工作在On-Off快速循環(huán)轉換的狀態(tài),DV/DT和DI/DT都在急劇變換,因此,功率開關管既是電場耦合的主要干擾源,也是磁場耦合的主要干擾源。 (2)高頻變壓器 高頻變壓器的EMI來源集中體現(xiàn)在漏感對應的di/dt快速循環(huán)變換,因此高頻變壓器是磁場耦合的重要干擾源。 (3)整流二極管 整流二極管的EMI來源集中體現(xiàn)在反向恢復特性上,反向恢復電流的斷續(xù)點會在電感(引線電感、雜散電感等)產生高dv/dt,從而導致強電磁干擾。 (4)PCB 準確的說,PCB是上述干擾源的耦合通道,PCB的優(yōu)劣,直接對應著對上述EMI源抑制的好壞。 2.開關電源EMI傳輸通道分類 (1)傳導干擾的傳輸通道 1)容性耦合 2)感性耦合 3)電阻耦合 a.公共電源內阻產生的電阻傳導耦合; b.公共地線阻抗產生的電阻傳導耦合; c.公共線路阻抗產生的電阻傳導耦合; (2)輻射干擾的傳輸通道 1)在開關電源中,能構成輻射干擾源的元器件和導線均可以被假設為天線,從而利用電偶極子和磁偶極子理論進行分析;二極管、電容、功率開關管可以假設為電偶極子,電感線圈可以假設為磁偶極子; 2)沒有屏蔽體時,電偶極子、磁偶極子,產生的電磁波傳輸通道為空氣(可以假設為自由空間); 3)有屏蔽體時,考慮屏蔽體的縫隙和孔洞,按照泄漏場的數(shù)學模型進行分析處理。 3.開關電源EMI抑制的9大措施 在開關電源中,電壓和電流的突變,即高DV/DT和DI/DT,是其EMI產生的主要原因。實現(xiàn)開關電源的EMC設計技術措施主要基于以下兩點: (1)盡量減小電源本身所產生的干擾源,利用抑制干擾的方法或產生干擾較小的元器件和電路,并進行合理布局; (2)通過接地、濾波、屏蔽等技術抑制電源的EMI以及提高電源的EMS。 分開來講,9大措施分別是: ①減小DV/DT和DI/DT(降低其峰值、減緩其斜率); ②壓敏電阻的合理應用,以降低浪涌電壓; ③阻尼網(wǎng)絡抑制過沖 ④采用軟恢復特性的二極管,以降低高頻段EMI ⑤有源功率因數(shù)校正,以及其他諧波校正技術 ⑥采用合理設計的電源線濾波器 ⑦合理的接地處理 ⑧有效的屏蔽措施 ⑨合理的PCB設計 4.高頻變壓器漏感的控制 高頻變壓器的漏感是功率開關管關斷尖峰電壓產生的重要原因之一,因此,控制漏感成為解決高頻變壓器帶來的EMI首要面對的問題。 減小高頻變壓器漏感兩個切入點:電氣設計、工藝設計。 (1)選擇合適磁芯,降低漏感。漏感與原邊匝數(shù)平方成正比,減小匝數(shù)會顯著降低漏感。 (2)減小繞組間的絕緣層?,F(xiàn)在有一種稱之為“黃金薄膜”的絕緣層,厚度20~100um,脈沖擊穿電壓可達幾千伏。 (3)增加繞組間耦合度,減小漏感。 5.高頻變壓器的屏蔽 為防止高頻變壓器的漏磁對周圍電路產生干擾,可采用屏蔽帶來屏蔽高頻變壓器的漏磁場。屏蔽帶一般由銅箔制作,繞在變壓器外部一周,并進行接地,屏蔽帶相對于漏磁場來說是一個短路環(huán),從而抑制漏磁場更大范圍的泄漏。 高頻變壓器,磁心之間和繞組之間會發(fā)生相對位移,從而導致高頻變壓器在工作中產生噪聲(嘯叫、振動)。為防止該噪聲,需要對變壓器采取加固措施: (1)用環(huán)氧樹脂將磁心(例如EE、EI磁心)的三個接觸面進行粘接,抑制相對位移的產生; (2)用“玻璃珠”(Glass beads)膠合劑粘結磁心,效果更好。
文章轉載自網(wǎng)絡,如有侵權,請聯(lián)系刪除。 |
| 發(fā)布時間:2017.09.07 來源:開關電源廠 |
上一個:斜率的傳遞函數(shù):次諧波振蕩的理論解釋 | 下一個:開關電源LCD無損吸收電路! |
東莞市玖琪實業(yè)有限公司專業(yè)生產:電源適配器、充電器、LED驅動電源、車載充電器、開關電源等....