DC/DC變換器發(fā)展趨勢(shì) |
為了以更低的功耗獲得更高的速度和更佳的性能,半導(dǎo)體器件正在向1V工作電壓發(fā)展,這也對(duì)DC/DC變換器提出了更高的要求?由于便攜產(chǎn)品將率先采用1V工作電壓,因而對(duì)電源適配器效率和功率密度的挑戰(zhàn)顯得更為嚴(yán)峻?除了需要增添更多的功能外,還需要延長(zhǎng)電池的使用壽命并縮小系統(tǒng)體積?隨著便攜系統(tǒng)內(nèi)部功能的增多,如更高的內(nèi)存?更快的處理速度?因特網(wǎng)訪問帶寬更高,對(duì)電源適配器的要求也相應(yīng)提高?電源適配器效率的改善則意味著新一代便攜系統(tǒng)需要承受指數(shù)級(jí)增長(zhǎng)的電流,系統(tǒng)體積小,散熱能力差,更容易產(chǎn)生過熱?因此系統(tǒng)散熱成為令人關(guān)注的問題在Uo=1V的電壓下維持較高的電效率是非常困難的?如果輸入和輸出電壓之間的差值增加更難獲得高性能?為此,必須找到適合高性能?小體積?長(zhǎng)時(shí)間運(yùn)行的便攜系統(tǒng)的方案。 筆記本電腦就是要求低工作電壓的便攜系統(tǒng)之一?這些系統(tǒng)的核心CPU的DC/DC應(yīng)用系統(tǒng)要求Um=2.1V和Uo=1.3V,輸出電流通常高達(dá)15A,因而傾向于采用1V工作電壓來減少功率消耗?低功率的便攜系統(tǒng)可能會(huì)首先采用U=1V的電壓,如PDA這類手持便攜系統(tǒng)對(duì)功率耗散的增加極其敏感,這些裝置通常尺寸極小,隨著功能的不斷增加,散熱成為首先要解決的問題。 1.1V電源適配器面臨的挑戰(zhàn) 許多便攜系統(tǒng)采用同步補(bǔ)償DC/DC拓?fù)浣Y(jié)構(gòu)?但是,隨著輸出電壓不斷降低以及輸入電壓與輸出電壓比值U/U的增加,設(shè)計(jì)高效變換器變得越發(fā)困難?由于Ua/Ua與DC/DC變換器中功率MOSFET的負(fù)載周期成正比,輸出電壓降低得越多,同步FET(VT2)的導(dǎo)通時(shí)間便越長(zhǎng),開關(guān)損耗對(duì)控制FET(VT1)的影響就越大?目前,某些系統(tǒng)同步FET的負(fù)載周期已接近95%,控制FET接近5%?如果控制FET的負(fù)載周期進(jìn)一步降低,將很難控制DC/DC變換器,而同步FET的導(dǎo)通時(shí)間也將增加?在某些情況下,要求同步FET的導(dǎo)通電阻非常低,以致必須使用兩個(gè)器件并聯(lián),而不是傳統(tǒng)的一個(gè)器件?但是,隨著對(duì)功率密度要求的日益提高,系統(tǒng)體積的縮小又與增加器件相違?可見,功率半導(dǎo)體的優(yōu)化不僅包括改善功率密度?增加效率?減少器件數(shù)量?減小主板空間,還要減小主板設(shè)計(jì)的復(fù)雜性?減少設(shè)計(jì)工作量等?這些因素都將促進(jìn)便攜系統(tǒng)向Uoa=1V的工作電壓發(fā)展,從而必須改善系統(tǒng)功能,增加電池壽命和縮小體積? 2.優(yōu)化功率半導(dǎo)體的Iv電源適配器性能 對(duì)于Uout=1V的功率半導(dǎo)體器件,U/U=控制FET的負(fù)載周期極低,因此對(duì)開關(guān)特性有特殊的要求?需要優(yōu)化的參數(shù)是開關(guān)電荷Qw?開關(guān)過程中電荷的轉(zhuǎn)移會(huì)造成功率耗散,因此應(yīng)盡可能降低Qsw以減少開關(guān)損耗,減少整個(gè)裝置的損耗?減少Q(mào)w和Rosone的目標(biāo)是降低整個(gè)品質(zhì)因數(shù)(FOM)?不過,減少這兩個(gè)參數(shù)會(huì)對(duì)其他參數(shù)造成影響,因而必須選擇最佳的硅平臺(tái)技術(shù)。 同步FET的負(fù)載周期非常長(zhǎng),峰值電流非常高,因此要盡可能降低Ro,這是同步FET的一個(gè)重要品質(zhì)因數(shù)?當(dāng)控制FET開啟時(shí),開關(guān)的電壓(控制FET的源極電壓,同步FET的漏極電壓)隨著du/dt的增加而不斷上升,dv/dt值可能上升得過快,導(dǎo)致與同步FET的寄生電容C耦合,從而在同步FET柵極產(chǎn)生電壓峰值?若這一峰值大于臨界電壓,同步FET將被開啟?由于控制FET及同步FET均被開啟,輸入電源適配器就會(huì)被短路,這會(huì)大大損壞電路性能,并造成過熱及其他故障?可以通過優(yōu)化同步FET的電荷比(QD/Qos<1)來避免dv/dt導(dǎo)致的非預(yù)期開啟?Qs是前柵臨界電荷? 同步補(bǔ)償拓?fù)浣Y(jié)構(gòu)也通過并聯(lián)肖特基二極管和同步FET來改善死區(qū)時(shí)間?死區(qū)時(shí)間是指FET開關(guān)信號(hào)間的內(nèi)部延遲,用來避免直通?由于肖特基的U值低于FET自身二極管的管壓降,因而在死區(qū)時(shí)間內(nèi)導(dǎo)通過程中,電流通過肖特基而不是同步FET的自身二極管?U1越低,對(duì)死區(qū)時(shí)間的影響就越大?并聯(lián)肖特基帶來的自感應(yīng)可能會(huì)造成肖特基U值的升高甚至抵消肖特基對(duì)FET自身二極管的優(yōu)勢(shì),因而應(yīng)將肖特基自感應(yīng)控制在較低的水平,同時(shí)優(yōu)化印制電路板設(shè)計(jì)以最大限度地減少或消除雜散電感。 3.現(xiàn)有的1V電源適配器方案 IR的雙Fetkytmirf7901Dl方案將所有功率半導(dǎo)體器件集成在單一的SO8封裝內(nèi),UO=1V,工作效率超過85%,并可節(jié)省主板面積60%,從而使雙FETKY方案的功率密度得到大大改善?該器件完全優(yōu)化了MOSFET和肖特基半導(dǎo)體,適用于要求輸出電流高達(dá)5A的便攜系統(tǒng)的同步補(bǔ)償DC/DC變換器? FETKY封裝設(shè)有連接控制FET?同步FET和肖特基二極管的互連結(jié)構(gòu),因而簡(jiǎn)化了電路板設(shè)計(jì)的復(fù)雜性,并有助于減少外部印制電路板占用面積和互連器件的雜散電感?與離散式方案相比,集成方案將主板占用空間降低了60%? 雙DUALFETKY在1V操作環(huán)境下的峰值電路內(nèi)效率高達(dá)約87%,可解決低功率應(yīng)用勺設(shè)計(jì)難題。 隨著1V工作環(huán)境從低功率便攜系統(tǒng)向高功率系統(tǒng)延伸,應(yīng)選擇真正優(yōu)化的功率半導(dǎo)體器件來增強(qiáng)系統(tǒng)性能?雙FETKY方案可改善低至Uour=1V的工作電壓的應(yīng)用系統(tǒng)的性能。
圖4-68為同步補(bǔ)償DC/DC變換器拓?fù)浣Y(jié)構(gòu)?每一器件都需要特別優(yōu)化,以獲得較高的電路效率?VT1要求低R1moN值和低的Qw;VT2要求低RDs(oN)及低的QGD/QGS1電荷比;肖特基要求低UF值? 雙FETKY為Uour=1V的應(yīng)用提供了較高的電路效率,峰值效率約為87%?圖4-69展示的是低功率便攜系統(tǒng)的電路性能,可以看出,Uou=1V時(shí),負(fù)載功率損耗得以降低;Q0Qs電荷比降低;肖特基要求低UF值。
文章轉(zhuǎn)載自網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系刪除。 |
| 發(fā)布時(shí)間:2018.05.09 來源:電源適配器廠家 |
上一個(gè):電源適配器的電磁兼容技術(shù) | 下一個(gè):開關(guān)電源噪聲的產(chǎn)生-內(nèi)部干擾源 |
東莞市玖琪實(shí)業(yè)有限公司專業(yè)生產(chǎn):電源適配器、充電器、LED驅(qū)動(dòng)電源、車載充電器、開關(guān)電源等....